禹州下雌乜市场营销有限公司_五大经典算法之回溯法

一、基本概念

??回溯法,又称为试探法,按选优条件向前不断搜索,以达到目标。但是当探索到某一步时,如果发现原先选择并不优或达不到目标,就会退回一步重新选择,这种达不到目的就退回再走的算法称为回溯法。

与穷举法的区别和联系:

相同点:它们都是基于试探的。

区别:穷举法要将一个解的各个部分全部生成后,才检查是否满足条件,若不满足,则直接放弃该完整解,然后再尝试另一个可能的完整解,它并没有沿着一个可能的完整解的各个部分逐步回退生成解的过程。而对于回溯法,一个解的各个部分是逐步生成的,当发现当前生成的某部分不满足约束条件时,就放弃该步所做的工作,退到上一步进行新的尝试,而不是放弃整个解重来。

二、基本思想

??对于可以使用回溯法来解决的问题,首先可以将其解空间可以看成一棵解空间树。在回溯法中,每次扩大当前部分解时,都面临一个可选的状态集合(所有的子树),每个树结点代表一个可能的部分解。

??回溯法对任一解的生成,一般都采用逐步扩大解的方式。每前进一步,都试图在当前部分解的基础上扩大该部分解。它在问题的状态空间树中,从开始结点(根结点)出发,以深度优先搜索整个状态空间。这个开始结点成为活结点,同时也成为当前的扩展结点。在当前扩展结点处,搜索向纵深方向移至一个新结点。这个新结点成为新的活结点,并成为当前扩展结点。如果在当前扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。此时,应往回移动(回溯)至最近的活结点处,并使这个活结点成为当前扩展结点。回溯法以这种工作方式递归地在状态空间中搜索,直到找到所要求的解或解空间中已无活结点时为止。

三、解题步骤(思路)

  1. 针对给定的问题,定义问题的解空间;
  2. 确定易于搜索的解空间结构;
  3. 以深度优先方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。(这里的剪枝函数就是判断该结点是否满足问题题设,如果满足则向下搜索,不满足则在此剪枝

四、算法框架

1. 递归实现:

?变量解释:

??x:存储试探解的数组

??n:解空间树的层数

??i:搜索目前所达到的层数

??start:子节点解空间的最小值

??end:子节点解空间的最大值

int x[n];
void backtrack (int i) {
    if (i > n) {
       回溯结束; 
    } else {
        // 这里回溯子节点的解空间为start~end
       for (j = start; j <= end; j++) {
            // 满足条件,向下搜索
            if (j满足题设条件) {
                x[i] = j;
                backtrack(i+1);
            // 不满足条件,在此剪枝(即回溯)
            } else {
            }
       }
   }
}   

?2. 非递归实现:

?变量解释:

??x:存储试探解的数组

??n:解空间树的层数

??i:搜索目前所达到的层数

??start:子节点解空间的最小值

??end:子节点解空间的最大值

void f_backtrack(int i) {
  //初始化解向量
  for (int j = 0; j < n; j++) {
    x[j] = 1;
  }
  while (i >= 1) {
    while (x[i] <= n) {
      if (place(i)) {
        if (i == n) {
          回溯结束;
          break;
        // 满足条件,向下搜索
        } else {
          i++;
          x[i] = 1;
        }
      // 不满足条件,在此剪枝(即回溯)
      } else {
        x[i]++;
      }
    }
    //遍历完子节点解空间后,向上剪枝(即回溯)
    x[i] = 1;
    i--;
    x[i]++;
  }
}  

相比之下,递归设计方法比较简单,而非递归方法,也就是循环方法设计细节比较多,但如果掌握了其特点,对不同问题的适用性很强(即代码只需要很少的修改就可以应用到不同问题),加之其最大的优势:效率更高(因为递归的实现是通过调用函数本身,函数调用的时候,每次调用时要做地址保存,参数传递等,这是通过一个递归工作栈实现的。具体是每次调用函数本身要保存的内容包括:局部变量、形参、调用函数地址、返回值。那么,如果递归调用N次,就要分配N局部变量、N形参、N调用函数地址、N返回值。这势必是影响效率的。)

void f_backtrack int i chu shi hua jie xiang liang for int j j lt n j x j 1 while i gt 1 while x i lt n if place i if i n hui su jie shu break man zu tiao jian, xiang xia sou suo else i x i 1 bu man zu tiao jian, zai ci jian zhi ji hui su else x i bian li wan zi jie dian jie kong jian hou, xiang shang jian zhi ji hui su x i 1 i x i xiang bi zhi xia, di gui she ji fang fa bi jiao jian dan, er fei di gui fang fa, ye jiu shi xun huan fang fa she ji xi jie bi jiao duo, dan ru guo zhang wo le qi te dian, dui bu tong wen ti de shi yong xing hen qiang ji dai ma zhi xu yao hen shao de xiu gai jiu ke yi ying yong dao bu tong wen ti, jia zhi qi zui da de you shi: xiao lv geng gao yin wei di gui de shi xian shi tong guo diao yong han shu ben shen, han shu diao yong de shi hou, mei ci diao yong shi yao zuo di zhi bao cun, can shu chuan di deng, zhe shi tong guo yi ge di gui gong zuo zhan shi xian de. ju ti shi mei ci diao yong han shu ben shen yao bao cun de nei rong bao kuo: ju bu bian liang xing can diao yong han shu di zhi fan hui zhi. na me, ru guo di gui diao yong N ci, jiu yao fen pei N ju bu bian liang N xing can N diao yong han shu di zhi N fan hui zhi. zhe shi bi shi ying xiang xiao lv de.

五、经典实现

经典问题:八皇后问题

??八皇后问题,是一个古老而着名的问题,是回溯算法的典型例题。该问题是十九世纪着名的数学家高斯1850年提出:

??在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上(斜率为1),问有多少种摆法。高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。

递归实现为以下代码中backtrack方法

非递归实现为以下代码中f_backtrack方法:

#include 
using namespace std;
int n;
int *x;
int sum;
bool place(int k)
{
  for (int j = 1; j < k; j++)
    if (abs(x[k] - x[j]) == abs(k - j) || x[j] == x[k])
      return false;
  return true;
}

void output()
{
  sum++; //sum为所有的可行的解
  for (int m = 1; m <= n; m++)
  {
    cout << "<" << m << "," << x[m] << ">"; //这一行用输出当递归到叶节点的时候,一个可行解
  }
  cout << endl;
}

void f_backtrack(int i)
{
  for (int j = 0; j < n; j++)
  { //初始化解向量
    x[j] = 1;
  }
  while (i >= 1)
  {
    while (x[i] <= n)
    {
      if (place(i))
      { //得到可行解
        if (i == n)
        {
          output();
          break;
        } //得到最终可行解,退出
        else
        { //得到部分可行解,搜索下一行
          i++;
          x[i] = 1;
        }
      }
      else
      { //当前解不可行
        x[i]++;
      }
    }
    x[i] = 1;
    i--;
    x[i]++; //回溯
  }
}

void backtrack(int i)
{
  if (i > n)
  {
    output();
  }
  else
  {
    for (int j = 1; j <= n; j++)
    {
      x[i] = j;
      if (place(i))
      {
        backtrack(i + 1);
      }
      else
      {
      }
    }
  }
}

int main()
{
  n = 8;
  sum = 0;
  x = new int[n + 1];
  for (int i = 0; i <= n; i++)
    x[i] = 0;
  backtrack(1);
  cout << "方案共有" << sum << endl;
} 

当前文章:http://www.justintl.com/8my/127241-271593-60896.html

发布时间:00:27:58

765544.com??香港铁铁算4887正版??香港现场报码??新跑狗图论坛??神算子论坛??16668cc开奖现场??45660大赢家??小鱼儿香港论坛662399??66575香港赛马会资料??139kj本港台开奖直播现场??